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dimensionst 
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Departamento de Fisica, PUC, 22452, Rio de Janeiro, Brazil 
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Abstract, We present estimates for critical exponents of self-avoiding walks on a cubic 
lattice. We treat a grand canonical ensemble of walks with free ends in a Monte Carlo 
approach and make use of real space renormalisation ideas. Our estimate for v is 0.59 * 0.01. 
Our estimate for y does not share the same degree of accuracy. However, we are able to 
pinpoint the source of this discrepancy. In addition, we define a quantity ,yL( p ) ,  the 
probability that a walk starting at the origin will end outside or at the border of a cube of 
side L. This quantity turns out to be quite suitable for a real space renormalisation group 
analysis. 

1. Introduction 

Self-avoiding walks (SAW) on a lattice are a suitable model for the conformational 
properties of long linear polymers in good solvents; the self-avoidance constraint 
simulates the excluded volume effect arising from short-range monomer-monomer 
repulsion (for a review, see the book by de Gennes (1979)). Although the experimental 
study of polymer solutions is almost entirely confined to the physically realisable space 
dimensionality d = 3 (d = 2 can be obtained through adsorption of a polymer monolayer 
on a surface, see, e.g., Villanove and Rondelez (1980)), there is no such restriction as 
regards the theoretical study of SAW. Further, since the statistics of SAW is obtained 
in the n + 0 limit of the ferromagnetic n-component spin vector model (de Gennes 
1972, des Cloizeaux 1975), concepts and methods initially devised for the study of 
thermal phase transitions can be (and actually have been) successfully applied in this 
case. From this viewpoint, one can see space dimensionality as a parameter (which 
can even be made to vary continuously, as in the E expansion (de Gennes 1972)). In 
particular, the Flory formula (see de Gennes 1979) for the exponent v (relating the 
average RMS end-to-end distance of a SAW to the number of steps N through ( R2)”* - 
N”)  is written as 

v = 3/( d + 2) 1 a d a 4 .  (1) 

For d 2 4 the Flory approach correctly predicts the excluded volume to be irrelevant, 
so v = f (as in a random walk). In spite of its approximate nature, the Flory formula 
works surprisingly well (this fact is often attributed to a fortuitous cancellation of 
errors): it is exact in d = 1 and, apart from logarithmic corrections, in d = 4 (although 
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it is not exact in d = 4-  E (de Gennes 1972)), and is thought to be exact in d = 2 as 
well (Nienhuis 1982). However, in d = 3 there is a considerable amount of evidence 
pointing towards a value of v slightly lower than the Flory estimate of $: from a 
field-theoretic approach, Le Guillou and Zinn-Justin (1977, 1980) obtain v = 0.588 * 
0.001; Monte Carlo renormalisation group calculations by Kremer et a1 (1981) give 
v=0.59*0.01; from a Monte Carlo approach, using the concept of ‘local fractal 
dimensionality’, Havlin and Ben-Avraham (1983) quote v = 0.588 * 0.003. Further, the 
analysis of experimental results from, say, light scattering in polymer solutions also 
seems to favour a value of v smaller than 0.60; Cotton (1980) quotes v = 0.586 * 0.004. 
Recently, Obukhov (1984) has estimated that, for 1 < d < 4, the accuracy S v /  v of the 
Flory approximation must be 10-’-10-*; although this gives ample room for the above 
estimates to be considered consistent with Flory’s value, the question still persists as 
to what the precise value of v is in d = 3. Thus, we feel that the use of a variety of 
methods to approach the SAW problem in d = 3  is justified, inasmuch as they can 
provide independent estimates of the quantities of interest. When added to the already 
existing numerical results, it is expected that the new ones can contribute towards a 
better understanding of the physical problem under study. 

In this paper we report the results from a Monte Carlo (MC)  study of SAW with 
free endpoints on a cubic lattice. The present study is an extension of the MC approach 
of Aragio de Carvalho and Caracciolo (1983) for SAW with fixed endpoints which 
incorporates the improvements proposed by Berretti and Sokal (1985). Both articles 
originate from a connection with field theory worked out by Aragio de Carvalho et 
a1 (1983), which, in turn, is a further development of the work of Brydges et a1 (1982). 

In 0 2 below we recall the definition of a few basic quantities which play important 
roles in our calculations, and the MC procedure is described; in § 3 we present our 
results and carry out their analysis in a standard way; then, in 3 4 we show results 
obtained through a new real space renormalisation scheme from which it is possible 
to obtain accurate estimates from the analysis of our data; finally, in § 5 we summarise 
our findings. 

2. Statistical ensemble and MC procedure 

MC techniques are usually applied to perform averages over SAW configurations with 
a fixed number, N, of steps, which corresponds to a canonical ensemble. From MC 
simulations for a given lattice and different values of N, one is able to estimate the 
exponent v defined previously. As regards the (lattice-dependent) effective coordina- 
tion number p and the susceptibility-like exponent y, defined by 

Chi - p N N  ’-‘ (2) 

where CN is the number of N-step SAW starting at the origin on a given lattice, their 
values have been estimated to great accuracy mainly by exact enumeration techniques 
(see, e.g., the review by McKenzie (1976)). For 1 < d  <4, y >  1. Le Guillou and 
Zinn-Justin (1977, 1980) quote y3d = 1.165 * 0.001 1. 

On the other hand, if one draws upon the analogy between the SAW problem and 
Euclidean lattice field theory (Aragio de Carvalho et a1 1983), the statistical ensemble 
which arises most naturally is the space of all SAW, with any number of steps (hereafter 
referred to as { U } ) ,  which means a ‘grand canonical’ ensemble. To an N-step walk 
one assigns a fugacity PN, where B is the inverse temperature of the associated field 
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theory (de Gennes 1979). From (2) the grand partition function x ( P )  (which is the 
susceptibility of the associated field theory) becomes critical at Pc = p - ' ;  with T = 
( P c - P ) / P c ,  x ( P )  behaves as 

X ( P ) - i - - y  p + p;(.+O'). (3) 

Two other quantities of interest are the average number of steps in a SAW for a 
given p and the mean square end-to-end distance, respectively given by 

and 

Their critical behaviour is immediately seen to be 

( 5 a )  - 1  
( N ) p  - i- 
( R2)p  - T-'" 7 + o+. (5b)  

Finally, we introduce a quantity Q( p ) ,  related to the four-point correlation function 
of the field theory problem, which is particularly useful to estimate the exponent y 
(which cannot be obtained directly through x without the large errors involved in 
computing partition functions via MC methods). Q ( P )  is the probability that two 
independent walks starting from the origin will not intersect each other again 

where ( ~ ( w ~ ,  w 2 )  = 1 if the walks do not intercept each other and is zero otherwise. 
One can show (AragHo de Carvalho et a1 1983) that 

whence, from (3) and assuming 1 < d < 4 (so y > 1 )  

Q( P )  - ry- '  7 + o+. (8) 
The MC procedure generates two independent sequences of SAW, both starting at 

the origin and having the other end free. From an initial arbitrary configuration, each 
sequence is generated by using two types of elementary deformations of the walks: (i) 
adding a link (4N = +1) or (ii) deleting a link (4N = - 1 )  at the free end. Obviously, 
this latter possibility will only arise if the walk has not been previously reduced to a 
point ( N ( w )  = 0). There may also be null transitions in which the walk is transformed 
into itself. 

With the possible deformations restricted to the free end of the walk, this algorithm 
has two important properties: ( i )  it is ergodic (any walk in the ensemble can be 
transformed into any other walk) and (ii) it is local in the sense that, except for the 
SAW restriction, the MC transition probability W ( w  + U ' )  depends on a very small 
number of links. We can then write 

W ( w  + U ' )  = P ( A N ) u ( w ' )  (9) 

where ( + ( U ' )  = 1 if w'  is a SAW, and zero otherwise. 
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The local term P ( A N )  must satisfy the condition 
P o ( w ) + c  P(AN) = 1 (10) 

e‘ 

where P o ( w )  is the probability of a null transition and the sum extends over all unitary 
lattice vectors e* from a site to its nearest neighbours. 

The detailed balance equation is 
P ” ” ’ P ( A N )  = P ” ” ” P ( - A N )  (11) 

P(+1)  = PP(-1). (12) 
where w and w‘ are SAW and N ( w )  - N ( w ‘ )  = AA? Thus 

We now specialise to a d-dimensional hypercubic lattice. One has to consider two 
possibilities separately: 

N ( w )  # 0: P O ( N ( U ) # O ) + ( ~ ~ - ~ ) P ( I ) + P ( - I ) =  1 (13a) 
N ( w )  =0: (136) 

Since there are three equations (12), (13a) and (136) and four unknown quantities, 
we must make a choice. In order that the phase space be spanned as thoroughly as 
possible in a MC sweep, we choose Po( N( w )  # 0) equal to zero. Then, we have 

Po( N (  w ) = 0) + 2dP( 1) = 1. 

1 
1+(2d  - l ) P  

P(-1) = P 
1 +(2d  - 1)P 

P (1 )=  

1 - P  
I +(2d - 1)P ’ 

Po( N ( w )  = 0) = 

Once we have the transition probabilities, the process of generating the MC sequence 
of walks follows the usual steps. It is to be noted that, if the transition w + w ’  
corresponds to the addition of a new link, it has to be checked whether (J’ is a SAW 

or not; if it is then a‘ is the next walk in the sequence, whereas if it is not then the 
next walk is w again. Since links can be deleted as well as added, a walk can always 
get out of a trap, by tracing back on previous steps. This, coupled to the fact that in 
the grand canonical ensemble all walks (and not only those with a given number of 
steps) contribute to the averages, makes our procedure more efficient than the usual 
ones in terms of ‘per cent of phase space spanned per sweep’. Although the constraint 
that deformations can only take place at the extremity of the walk works slightly against 
efficiency, in the critical region ( p - Pc < 1) the probability of deletion of a link is high 
enough (see (14)), so a walk will be frequently reduced to a point and then start again 
with no memory of previous steps. For a discussion of the interplay between different 
features of MC, see Berretti and Sokal (1985). 

It may be of interest to note that a grand canonical ensemble has also been used 
in a MC study of SAW (in two dimensions) by Redner and Reynolds (1981b). While 
our method for generating walks is a dynamic one, theirs is a quasistatic method which 
used an enrichment algorithm (see appendix A of Berretti and Sokal (1985)) in which 
all possible next steps of a walk are systematically tested. This latter aspect of their 
algorithm makes it somewhat similar, although not identical, to exact enumeration 
techniques. In spite of the differences in walk-generating algorithms, both methods 
share the advantages of the grand canonical formulation: walks of all lengths enter 
the averages, and configurational properties are calculated in terms of the temperature- 
like variable P (instead of N ) ,  which makes it easier to probe the vicinity of the 
asymptotic regime (Redner and Reynolds 1981b, Berretti and Sokal 1985). 
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3. Numerical results 

We have developed an MC computer program for SAW with free endpoints which 
calculates the averages ( N ) p ,  ( R 2 ) p  and ( Q ) @ ,  respectively defined by (4a),  (46) and 
(6) above. Although our program is in principle suitable for application to a generic 
&dimensional hypercubic lattice, we have up to now restricted ourselves to d = 3. 

We have made use of ( 5 a )  above in order to determine the extent of the critical 
region. Our approach consisted of the following steps. 

(i)  We plotted ( N ) p  against p, ignoring the fact that the exponent in ( 5 a )  is already 
known. The range of values of p for which the fitted exponent was closest to -1  was 
assumed to be the region in which ( 5 a ) ,  (56) and (8) above hold. 

(ii) Using this range of values of p and fixing the exponent to unity, we plotted 
( N ) p  against p in order to obtain pc .  

(iii) Using the range of values of p given by (i)  and pc as given by (ii) we plotted 

Note that the value of pc obtained from (ii)  is outside (and above) the region 
defined in (i), which in the present case is estimated to be the interval 0.1925 s p s 0.2075 
(figure l ) ,  whereas pc- 0.2133. The reason for this is that, since our Monte Carlo runs 
have a finite (although large) number of iterations (typically 8 x lo6), our results are 
expected to be properly thermalised only as long as we do not get too close to the 
critical point. Thus, step (i) above is a self-consistency condition: it establishes a 
subregion of the critical region where critical fluctuations are not strong enough to 
prevent MC data from stabilising by the end of a run. Typical times were of order 
2 x loT4 seconds per Monte Carlo step (-1.6 x lo3 seconds per run) on a Cyber 170/800 
computer. 

and Q ( p )  against 7 in order to obtain v and y. 

The values obtained for the critical quantities are 

p = p i '  = 4.689 * 0.003 

v = 0.58 * 0.02 ( 1 5 )  

y = 1.0*0.1. 

\ +  - 0.20 0.21 P,=0.2133 
P 

1/10 

Figure 1. Plot of ( ( IV)~,)- '  against p ;  the hatched region is that in which ( ( N ) B ) - ' - p +  
constant with least deviation. The straight line is a guide to the eye. 
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The value of pc thus obtained agrees with, and is more precise than, that quoted 
by Araglo de Carvalho and Caracciolo (1983) for SAW with fixed ends, namely 
4.66*0.04. It is also in very good agreement with the series results p = 4.6838 quoted 
by McKenzie (1976). We note that our result for pc did not change appreciably when 
we enlarged the range of values of p used as the ‘critical region’ mentioned above. 

The estimate obtained for v (see figure 2)  does seem to be lower than the Flory 
value of 0.6; however, the standard deviation is still large (although smaller than the 
corresponding one given by Aragio de Carvalho and Caracciolo (1983), who quote 
v # 0.62 f 0.05 for fixed-end SAW). 

I .  

I 

0.01 0.05 0.1 

‘P- P :’ 

Figure 2. Logarithmic plot of ( R * ) ~ ’ *  against 7 ;  only the best fit is shown. The straight 
line has slope -0.58 and we have used p,  = 0.2133. 

On the other hand, our estimate for y is rather poor. This is because the configur- 
ational space available to two walks with one free end each (whose probability of 
non-intersection, Q( p ) ,  yields y )  is very large; consequently, our MC results for Q( p )  
are much less accurate than those for ( R 2 ) @  or ( N ) p  (quantities related to a single 
walk) obtained from the same simulation. We note that, for SAW with fixed ends, in 
which case the configurational space involved in the calculation of Q ( p )  is much 
smaller, Araglo de Carvalho and Caracciolo (1983) quote y = 1.17 * 0.013 in d = 3, 
which is both more accurate than the present result and closer to other estimates, 
which give y = 1.165*0.0011 (Le Guillou and Justin, 1977, 1980). In order to have a 
deeper understanding of the reasons for our result, we have plotted the average number 
of intersections ( N I )  between the two walks (apart from their common origin) as a 
function of p (figure 3 ) .  The fact that this quantity is close to one, and fluctuates 
strongly about this central value, is a key point: what defines the quantity a ( w , ,  w 2 )  
in (6) above is whether the walks do not intersect each other at all or whether they 
intersect any number of times. Thus, the border is at one intersection, and it is 
understandable that fluctuations of ( N I )  about this value induce strong fluctuations in 
the estimates of quantities calculated through Q( p ) .  

Within the framework of this section, more precise results could possibily be 
obtained by extending our calculations to longer runs. However, we shall not try to 
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1.5 t 
I , 

0.19 0.20 0.21 p,= 0.2133 
P 

Figure 3. Average number of intersections ( N , )  (apart from the common origin) of two 
SAW, as a function of p. 

do so; instead, in the next section we show that an alternative analysis of our present 
data can be carried out with good results, as regards the accuracy of extrapolated 
estimates. 

4. Real space renormalisation group analysis 

Consider the quantity 

where { w : O +  x} is the set of all SAW which start at the origin and end at x. GP (x) is 
the two-point correlation function in the associated field theory, and behaves as 

where 5( p )  - ( pc- p ) - ”  is the correlation length of the field theory and corresponds 
to the mean square end-to-end distance of the polymer problem. 

We now define the quantity 

where {x out L d }  is the set of all points x outside or at the border of a hypercube of 
volume Ld centred at the origin. It is easy to see that: 

X L ( P ) < 1  O < P < P C  

lim x L (  p )  = 1 

lim X L ( P ) = O  

L-0 

lim x L (  p )  = 1 

In other words, , y L ( P )  is the probability that a walk starting at the origin will end 
outside (or at the border of) the hypercube Ld. 

L-0. P - P c  
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If we consider the real space renormalisation group procedure in which the hyper- 
cube Ld is renormalised into the elementary hypercube Id, probability invariance 
demands that 

In (19), which defines a renormalised bond fugacity p’ ,  we are making use of the fact 
that in the region of interest 0 < p < pc < 1, a fugacity can be interpreted as a probability 
of existence of a link (see the discussion in Redner and Reynolds (1981a,b)). Note 
that our procedure is not the same as the usual constant fugacity Monte Carlo 
renormalisation group (Redner and Reynolds 1981b). There, an MC sampling is done 
on a Pnite cell from the start, and only walks that traverse the cell are counted for the 
renormalised fugacity. 

Following the standard renormalisation group ideas (Wilson and Kogut 1974), we 
search for the fixed point of recursion relation (19) 

P* (L )  = X L ( P * ( L ) )  ( 2 0 )  

at which an estimate for the critical exponent is obtained through 

It is expected that 

lim p * ( L ) = p ,  
1 / L - O  

and 

lim v ( L )  = v. 
I / L + O  

The values of p for which (20 )  holds, for a range of values of L (in the region 
where ( N ) - ’  scales linearly with p, see 9 3) ,  are displayed in table 1, together with the 
respective estimates for v. For cubes with L >  11, the fixed point is expected to be 
located deeper inside the critical region, where critical fluctuations make it impractical 
for us to obtain accurate estimates, as discussed in 9 3. 

Instead of pushing our calculations for larger cubes, we have taken advantage of 
the fact that the simulations described in 9 4 provided us with a wealth of data for a 
number of (fixed) values of p. Thus, we have turned (20 )  inside out, i.e. for a given 
p we would interpolate to obtain the (non-integer) value of L which would make (20 )  
hold. The derivative in (21 )  was also obtained by a similar interpolation procedure. 

Table 1. Values of p * (  L ) ,  (dp’/ap)p.( L )  and v( L )  obtained from our renormalisation group 
analysis for different values of L 

L P* (L )  (w/ap) ,* , , ,  v ( L )  

5 0.191 27 1 1.6940 0.6545 
6 0.197 73 16.9009 0.6337 
7 0.201 63 22.6701 0.6235 
8 0.204 08 28.5072 0.6207 
9 0.205 84 36.0099 0.6131 

10 0.207 15 41.5422 0.6179 
11 0.208 21 49.6746 0.6140 
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Our data are displayed in table 2. Although the region of p space thus probed is 
roughly the same as the one swept by keeping L fixed, we feel that comparing both 
procedures is important as a check on the self-consistency of our renormalisation group 
scheme. 

Indeed, we have checked that the quality of our data is very much the same, whether 
one picks results from table 1 or table 2, or both. This means not only that the average 
square deviation from a suitable extrapolating curve (see below) is about the same 
either way, but also that an undesirable small jump in the exponent estimate is present 
in both calculational procedures (from L = 9 to L = 10 in table 1; from p = 0.203 75 to 
p = 0.2050 in table 2 ) .  While we have no explanation for this discontinuity at the 
moment, it seems comforting that our data exhibit a monotonic behaviour everywhere 
else. This may be an argument for viewing the causes of the jump as fortuitous, instead 
of a structural failure of our renormalisation group scheme. 

Following standard finite-size scaling arguments (see, e.g., Redner and Reynolds 
(1981b) and references therein), we have extrapolated the finite-L estimates of v against 
l / ln  L, and the finite-L estimates of pc against L-I’”, where a trial value of Y = 0.59 
(our central estimate, see below), has been used throughout. In both cases we have 
made use of a quadratic term, besides the linear one, to take curvatures into account, 
and performed a least-squares fit. Our results for p,  extrapolate much more smoothly 
than those for v, as can be seen from the estimated error bars (see below); certainly 
one of the reasons for the relatively bad performance for v is the jump in the data 
referred to above. 

Below we quote our extrapolations, obtained by using all data, both from tables 1 
and 2. The error bars are given by the points at which the summed square deviations 
are twice those at their respective minimum (central estimates). Thus, we have 

pc = 0.2133 * 0.0001 

(/L = p i ’  = 4.688 0.002) 

v = 0.59 * 0.01 

Once again, our central estimate for v is lower than the Flory value, though the 
error bar is just not narrow enough to exclude it. 

Table 2. Values of L, ( J p ’ / J p ) , . , , ,  and v ( L )  obtained from our  renormalisation group 
analysis for different temperatures p*(  L). 

0.190 0 
0.192 5 
0.195 0 
0.197 5 
0.200 0 
0.202 5 
0.203 75 
0.205 0 
0.206 25 
0.207 50 
0.208 15 

4.8488 
5.1546 
5.5031 
5.9610 
6.5331 
7.3362 
7.7965 
8.5242 
9.2264 

10.3926 
11.6174 

13.2639 
15.4407 
17.6168 
21.1862 
26.7818 
29.6831 
32.8451 
37.4504 
45.6748 
57.4933 

0.6348 
0.6230 
0.6223 
0.6147 
0.606 1 
0.6057 
0.6137 
0.6133 
0.6126 
0.6053 
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Although we have made no effort to separate statistical errors (e.g. from the Monte 
Carlo itself) from those originated from the extrapolation procedure, we feel that the 
error bars attributed to the latter are generous enough to cover variations arising from 
the former (for instance, we have decided to round up our estimate and error bar for 
v, which actually gives v = 0.590 * 0.007 on the basis of the above-mentioned criterion). 

Finally, we point out that the quantity xL(  p )  can be used in order to provide an 
estimate for the susceptibility exponent y in the following way. 

If we take into account the long distance behaviour of the correlation function 
G p ( x )  as given by (176) and transform the sum in (18) into an integral (which is 
justified close to the critical point), the following expression is obtained for x L ( / 3 )  
near criticality: 

,yL( p )  - T ~ - ”  exp(-l.r”). (24) 

If we use the central estimates for v and p c ,  namely 0.59 and 0.2133, (24) gives a 
value for y. Indeed from an average over several values of p, with L = 8, 9 and 10, 
we have obtained y = 1.25. Although the error bar is possibly as large as 0.1 in this 
case, this is reasonably closer than the corresponding result of 0 3 to y = 1.17 as obtained 
by Araglo de Carvalho and Caracciolo (1983). 

5. Conclusions 

We have shown that a Monte Carlo calculation for a grand canonical ensemble of 
SAW with free ends provides good estimates for the critical fugacity and for the 
correlation length exponent v in three dimensions. In particular, our estimate for v 
is close to 0.59, thus giving independent support to the (by now, widely held) view 
which points towards a value lower than the Flory result of 0.60. Although our result 
for the susceptibility exponent y is poorer than the corresponding one obtained for 
SAW with fixed ends by Araglo de Carvalho and Caracciolo (1983), we have succeeded 
in pinpointing the cause for this difference. 

In addition, we have given results obtained from a new real space renormalisation 
group approach to the analysis of our data, which show that the quantity x L ( p )  is 
indeed a very suitable one for this sort of calculational scheme. 
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